
Using Your Visual
Superpowers

With the intent of inspiring YOU to use
visual techniques when solving problems

Torbjörn Ryber
March 2014

Is
 T

hi
s

B
o

ok
 R

ig
ht

 F
or

 M
e?

INTRODUCTORY

Introductory content is for software testing professionals who are
relatively new to the subject matter of the ebook. Introductory
ebooks typically feature an overview of an aspect of testing or
guidance on understanding the fundamentals of the subject at hand.

INTERMEDIATE

Intermediate ebooks are for software testers who are already
familiar with the subject matter of the eBook but have limited hands-
on experience in this area. Intermediate level usually focuses on
working examples of a concept or relaying experiences of applying
the approach in a particular context.

ADVANCED

Advanced ebook content is for software testers who are, or intend
to become, experts on the subject matter. These ebooks look at
more advanced features of an aspect of software testing and help
the reader to develop a more complete understanding of the subject.

This eBook is intended for

INTRODUCTORY -
INTERMEDIATE
audience level(s)

In a system development project there can be a lot of written material for us to
interpret as well as assumptions that some things are already understood. We
all make a lot of interpretations and assumptions but are we making the same
assumptions? Well there is a great way to find out - let´s start drawing! When
modeling problems visually we are forced to clarify our hidden beliefs to others. In
an open environment people will start asking questions and either agree with you
or realize that they think differently which will then likely be a spark for fruitful
discussions. The main purposes of modeling visually are clarifying assumptions,
making it easier to solve complex problems and reach consensus of both problems
and solutions.

This paper describes a number of modelling techniques and methods that I have
found very useful when working with analysis of customer needs, requirements,
solutions and testing these. Visual methods are not only useful but a lot of fun as
well! Enjoy!

© Copyright notice: this paper is the intellectual property of Torbjörn Ryber.
You may copy parts of this paper for non-commercial purposes as long as you
include a reference.

A
bs

tr
ac

t

Torbjorn Ryber Torbjörn has always had
a great desire to learn. In order to learn, you need to
study and experiment. One way of taking the learning
experience a step further is to teach others what you
know. A large part of Torbjörn’s knowledge comes
from the comments and discussions with other people.
After teaching more than 100 classes in testing and
requirements and publishing the book /Essential
Software Test Design/ he still learns new things every
week--at least--that’s one of his goals. Torbjörn’s specific
goal during 2013 is to study Lean thinking, figure out
how we can work together more effectively in our task
to create superior software that gives real value to the
users, and to ask What can Lean do for testers?

B
io

gr
ap

hy

Ta
bl

e
of

 C
on

te
nt

s 1. Introduction 7

1.1 The Problem 7

1.2 The Solution 7

1.3 This Paper 8

2. Visual Problem Solving In Four Steps 9

3. But I Can’t Draw! 11

3.1 Guidelines 11

3.2 Text 11

3.3 Separators & Connectors 12

3.4 People 13

3.5 Bubbles 14

3.6 Icons 15

3.7 Things 15

3.8 Sources 16

4. The New Process & Where Testing Fits 17

4.1 In The Beginning There Was Darkness 17

4.2 Now What? - The Sprint Process 18

5.  Defining The Problem  21

5.1 How It All Started 21

6. Business Impact Mapping 24

7. Visualising The Solution 28

Ta
bl

e
of

 C
on

te
nt

s 8. Managing The Example Project 30

8.1 To Do Spreadsheet – AKA Product Backlog 31

8.2 Scrum Board 32

8.3 Reporting 33

9. Introduction To Test Design 35

9.1 Choosing Techniques 35

9.2 The Overarching Process 36

10. State Transition Testing 38

10.1 The State Graph 38

10.2 State Descriptions 40

10.3 State Change Table 41

11. Scenario Testing 43

11.1  Workflows  43

11.2 Cyclic Testing 43

11.3 Exercise Scenario Testing 44

12. Usability Testing 45

12.1 The General Process 45

12.2 Example Journal System 48

13. Summing This Up 50

13.1 Summing This Up 50

I want it all, and I want it now
Queen: I Want It All

1.1 THE PROBLEM

This line of text from Queen nicely sums up how people want their problems solved
nowadays. For us it is fairly uninteresting with excuses of various kinds. We have a
problem we want to be solved. In Internet time, we want that to happen right now.
We build IT support and develop work processes in order to solve a problem for
someone. If we do not solve the problem, the system does not work! This is true
regardless of what happens to be in the specification or what is said at meetings. I
t’s impossible to know everything from the beginning and it’s usually not even
possible to know everything when the project is over and the system is delivered
in a first version. There might not even be a best way to solve a problem but several
equally good!

Scott Barber talks about that focus of today’s performance testing 2.0 is the user’s
perception of performance. If the user feels that it is slow, there is a problem
regardless of whether the response time is one or ten seconds. A ten-second
response time may not be experienced as long if the user while waiting receives
valuable information to read. The conclusion is the same for all tests, if the user
perceives something as a problem - then we’ll have to do our best to solve it.

A professional problem solver ensures that the real problem is resolved and does
what it takes to go all the way to the finish.

Jerry Weinberg’s definition that Quality is value to someone still holds true in my
point of view and should be the guideline for all the work we do.

1.2 THE SOLUTION

A modern IT project is very much about communication between the participants
and here visualization is a fantastic tool. The pictures showing up on the wall showing
workload, performance and urgent problems is a good example of this, whether
we call it Kanban or Scrum. Fifteen minutes spent every morning in front of the
board reporting progress and jointly working out how to solve problems makes
collaboration easier.

The basic methods of Lean contain lots of graphic elements - value stream mapping is
done visually and in collaborative problem solving we use the A3 method, also called
the Lean Canvas. We solve many problems common in front of a whiteboard by
visually describing problems and solutions, which then form the basis for our work.
As a problem solver you have to constantly look for information and to structure and
visualize it.

Words are fantastic and part of the fun of reading books is that we create images
in our heads from what we read. The problem if we are to agree on something with
others based only on text, our own images will differ from the images others have in

1
.

In
tr

o
du

ct
io

n

their heads. In the dialogue with customers as well as within a development project,
it is therefore very powerful to combine words with pictures and show everyone
how we have interpreted the words. When creating visual models we have to
explicitly describe what we think and have this critically reviewed by others.

1.3 THIS PAPER

My goal is to show how visual techniques can be used in IT-projects to facilitate
collaboration and enhance problem solving. I do not have any aim to give complete
solutions or being academically correct but rather to inspire you. The paper has
testing focus but most of the methods used are not specific for testing.

To make this an enjoyable read I use material from real life. At least most of it is
true. Let´s just say it´s a stew of some real stories. Any characters used have traits
from several people I worked with over the years. All of the actual problem solving
comes from real examples. Much of the story is built around a single project that
did exist. It is definitely more of an experience report than an academic study even
though I make connections to great sources of information that you can dive into in
order to learn more. If you find something you recognize in the story we may have
worked together!

If you can’t explain it simply, you don’t understand it well enough.
Albert Einstein

If you cannot model the problem, you have not really understood it
Torbjörn Ryber

All models are by definition simplifications of reality. We create them in order to
understand something better but must always keep in mind that they are biased
and incomplete representations of reality. That said, here’s my model of visual
problem solving:

1. Collect all the information you can find

a. Read documents, there usually are some, sometimes many – although content
quality will vary

b. Talk to the right people – you will know who they are when you find them

c. If there is tool or piece of software – explore it!

2. Analyse what you found

a. Try to find a place where you can spread it all out to get an overview

b. Sort, group and throw away

3. Visualise

a. What kind of model or drawing may fit here?

b. It may be a good idea to use several different models to understand better

4. Present

a. Make it big – stick it on the wall, use a projector or a white board

b. Explain how you have interpreted the information and ask for input

c. This means that you start collecting more information so you are back on step
one again…

Continue going in cycles until you all agree on at least the important things.

2
.

V
is

ua
l P

ro
bl

em
 S

ol
vi

ng
 In

 F
ou

r
St

ep
s

Picture: the art of problem solving

Here are some excellent books on visual problem solving that have inspired me.

1. Dan Roam has written two must read’s called The Back of the Napkin and Blah-
Blah-Blah. Besides having cool titles they are excellent sources for information
on tools for visual problem solvers. Get to know the blah-blah meter to identify
the message.

2. Becky Agerbeck is a great GF, graphic facilitator that is. Her book is called The
Graphic Facilitators Guide and focus on the role of visually describing what is
discussed in a meeting or presentation while keeping out of the discussion. Nice
tips on creating your visual library.

3. Mike Rohde’s The Sketchnote Handbook describes the power of combining
words and pictures in your note taking. Try analyzing the next presentation you
attend – is the message clear enough to sketchnote?

4. Then read David Sibbet’s Visual Meetings and you have a pretty awesome start
on getting information to becoming a great visual problem solver. Then, according
to Malcolm Gladwell’s book Outliers, You just need to practice 10 000 hours to
become the best!

3
.

B
ut

 I
C

an
’t

 D
ra

w
! Sure you can! It is not about creating art, it is about content described visually in a

clear and consistent manner. With a few simple components in your visual library
you can create some great stuff.

3.1 GUIDELINES

 > Be consistent in your pictures, lines, color, size and text format

 > Make it easy to read. White space, write legibly, avoid spaghetti connectors. It will
get messy – redraw until it looks neat

 > Learn a few basic shapes and icons and practice drawing them quickly and
consistently

 > Content is really king, not the art. Try to get the essentials out and don’t try to put
everything in the drawing

3.2 TEXT

Practice writing using different styles and size. Make sure what you write is legible
and that you use different formats consistently. Lower case is usually faster to write
and easier to read than upper case.

Practice writing the alphabet in upper and lower case. Write quickly to spot your
weaknesses and slowly to practice specific letters. What type of your own writing is
reasonable fast and easy to read for others? Even at a distance?

EXERCISE

UPPER CASE

lower case

3.3 SEPARATORS & CONNECTORS

Use thick or thin lines to group or divide you drawings. The thicker and more colorful
- the more distinct is the division or connection. Thin, dotted or undulating line is
more vague.

EXERCISE

Practise drawing some variations of arrows and separators. They are
abundant in problem and solution pictures.

3.4 PEOPLE

I consider drawing people very important since users always are a central part of
the problem. Start using smileys or stickmen and if you feel comfortable draw star-
people or box-people to make the visuals more alive and fun.

EXERCISE

Faces: continue drawing the faces above. What moods are they in? The exercise
comes from Rohde: the Sketchnote Handbook

Decoration: add noses, beards, hair, hats, glasses or whatever you feel like to make
the faces more alive.

People: Try drawing the different simple people below. My tip is to select a type you
like and practice a lot during the boring non-visual meetings you are forced to attend.
When you feel ready – step up and draw them on the white board.

Stick Box Bean Squiggle Tobbe’s Own

!

!

!

!

!

!

!

!

!

!!

!

!

!

!

!

!

Variations
Combine people and add attributes to create meaning. Don´t sweat too much over
details, you can always add text to clarify.

3.5 BUBBLES

Combine thinking and talking bubbles to show communication and moods very
clearly. Get inspired by reading comic strips.

EXERCISE

Agneta and AnniFrid decided they would go dancing coming Saturday. Agneta loved
the idea but AnniFrid was more reluctant. Visualize their discussion

3.6 ICONS

Some icons are more valuable than others. For me in IT common icons are tool,
system, idea, document and e-mail. What are yours?

Draw icons for some of the words below. Show the person next to you. How easy
are the icons to understand? Information, question, answer, tool, idea, global, time,
database, document, key, start, stop or any word of your choice.

3.7 THINGS

Most representations of things can be drawn by adding simple elements together.
Start with a line, a dot, a circle, a triangle and a square. Practice writing the things
that are most common in your line of business. Practice a lot and you will make
an impression! This is a page from my notebook where I practice drawing simple
objects. I sometimes invent my own but often use my reference literature as a start.

EXERCISE

Draw nine things connected to your work. If you have to write a description you
probably have not found the essential part that makes a thing easy to recognize. Use
the five basic elements and add some detail where it makes sense.

Draw nine things in your home.

3.8 SOURCES

Mike Rohde’s and Brandy Agerbeck’s books contain lots of ideas where to start.
Another great source are the bikablo dictionaries produced by Neuland. They also
show you how to make pictures look even better using colors and shading.

My role as tester is often about general problem solving. By working with visual test
design from an early stage and make it visible to others. I analyze and challenge what
we think we know.

Regardless if the model is called an impact map or a state graph, it helps to increase
consensus and clarify doubts. The key is that models help us clarify ambiguities
throughout the project lifetime.

4.1 IN THE BEGINNING THERE WAS DARKNESS

Visualizing the problems is shining the light on shadowy areas to see what there
really is.

Starting a project I use the following first steps:

Defining the problem clearly from the start and creating the impact map helps us
focus on the users’ real needs. This serves as a basis for all our testing, especially
scenarios and acceptance testing.

The solution map helps us plan the test environment and visually mapping our testing
effort on the map. This is import input for our test design on where and what to test.

The story list is general used in the project to plan in what order to do things and
serves as input for what we should focus on and in what order.

Problem Definition
Understanding and
visualizing the problem.
Where are we?

Impact Map
Getting to know what
the users really wnat to
have.Overall goal, users
and what they need.

Solution Map
Visually describing the
solution.Describing our
test strategy.

To Do List
Creating a list of
thingsto do. The
product backlog.

4
.

T
h

e
N

ew
 P

ro
ce

ss
 &

 W
h

er
e

Te
st

in
g

F
it

s

So is this really the tester’s job? Well, my point is that these four models are a great
way to start a project. If someone else creates them, your job is to analyze and clarify
anything that is missing or wrong. If they don´t exist I usually create them in order
to structure my own work. Pretty often, but not always, the models are accepted as
input to the project as a whole. If not, they still help me identify problems and guide
my testing effort.

4.2 NOW WHAT? - THE SPRINT PROCESS

Since all projects I worked in during the last five years use sprints I will use that to
explain what happens after the planning part is done

The Sprint Process

At the start of each sprint we have a planning meeting where we select what items
on the product backlog to build in this sprint. In order to really understand what to
build we started to have what we call Three Amigos meetings. They turned out to
be really effective and the final acceptance of what we built turned out to be much
better than when we did not have these meetings.

Digging deep into
each item to do in
order to agree.
Visualize in test
models if possible.

Coding and testing
each item until we
are done.

Showing the client
what we have done.
Check functionality
for each item in the plan.

Usability testing of
all new and radically
changed parts to get
instant feedback.

Let the client really
feel the system. You
must inform them what
is not yet ready to test!

THREE AMIGOS

The purpose of the meeting is to discuss in detail what a user story really means.
Developers like to have them in order to create a given –when – then chart that they
can later automate. This table is then sometimes called the acceptance criteria for
a story. The most extreme form of Continuous Deployment fanatics would want to
automatically put the new code in production when these tests have passed. As a
tester I think this is a bit dangerous…

Given When Then

Given that a user enters a
veterinarian code

The button next is pressed
Show the Motivation for
veterinarian page

Given that a user enters an
invalid code

The button next is pressed
Show error message and stay on
the entry page

Now a tester would want to enter all possible variations here but that would not be
advisable at this moment of time at least. The main purpose is to identify important
typical cases that we need to agree on how to handle. We can then add any number
of variations we think are important to test but they will not necessarily be part of
the acceptance criteria.

My problem with this approach is that we focus too much on automated checks and
the developers need and it is not visual enough. Here I like to create some test design
models that could also be tables but in another format and I often use state graphs or
scenario descriptions to make it more visual.

Gojko Adzic has written about these things in Specification by Example and Bridging
the Gap. Read about Continuous Integration and Continuous Delivery in the books
with the same titles, written by Duvall et al. and Humble- Farley.

DEVELOP & TEST

We have divided testing into two separate parts. The first is fully automated tests
that are run mainly to check that the basic stuff works, this is done partly by the
developers themselves, partly by technical testers that focus on automation. With
fully automated I mean that whenever a piece of code or test is checked in – all of the
code is rebuilt, the database built and loaded with test data and then the automated
tests are run for instant feedback. That is mainly what we use the given-when-then
format for.

Now I dig into test design depending on what we are building. I show my models to
the rest of the project continuously and ask for their feedback. A lot of the time we
clear things out before I get to test things hands on.
Basically my idea is to build trust, credibility and mutual understanding with the
developers. I try not to sound like I give any orders on what to fix but rather discuss
what I found and ask for their opinion. Most of the time they take the initiative and
say, we have to fix this.

THE DEMO

The demo meeting in my opinion is more of a project meeting activity with a fairly
shallow presentation of what we have done so far. It is certainly good to have but
does not give us nearly as much feedback as needed. So we decided to add a couple
of more activities.

USABILITY TESTING

Whenever we have a new graphical interface or a radically changed one, we do a
simple yet effective usability test. This can be right after the demo or during the first
days of the following sprint when we have some slack. The good thing about having
this type of test regularly is that we get feedback from real users in real situations so
issues on usability are not just regarded as the testers’ subjective ideas than can be
ignored. The client’s opinions are rightly valued as more important to handle.

MINI-ACCEPTANCE TEST

In order to avoid big catastrophes in the end of a project we decided to let out
customers do acceptance testing continuously. It is very important to communicate
what is not yet ready to test in order not to make them feel like nothing works.
During a demo we can avoid doing things that we know are not really done
although we claim they are but when we let the users free they can and often will
spot our shortcomings.

Anyhow, the result from these mini acceptance tests is that customers realize that
some of things they have asked for does not really work the way they figured they
would. So often there are changes in the requirements as well. But when the final
acceptance test is done at the end of the project there are rarely any objections to
what is delivered and we have some very happy users. And that was the point of it
all, right!

5
.

D
efi

ni
ng

 T
h

e
P

ro
bl

em
A curious thing about a lot of problem solving is that we don´t really seem to bother
about understanding the problem before we have a solution ready in our minds. This
refers not only to vendors of standard systems but to building IT-systems in general.
To avoid having future users hating our solutions we are usually better off if we try to
understand what their problem really is before we try to solve it.

5.1 HOW IT ALL STARTED

 > It´s a mess sighed Agneta. We just don´t seem to ever finish this project. I really
need this system to help me administrating the work with the journal.

 > Well said developers AnniFrid and Benny with one voice, in IT we have these
testers that are said to be really great. Maybe they can help us out.

They all agreed that this would be a great idea and proceeded to contact Wolf, the
test department manager.

 > Yeah, I got just the right guy for you. You can have Bjorn, our kick-ass consultant,
he´ll test your system until it’s great. He can practically do anything, big-shot guy!

 > Eh, may I interrupt, says Bjorn – feeling a little uncomfortable with the direction
of the discussion. I am happy to listen to your story and see how I can help. Don´t
you have an important meeting to go to Wolf, he says.

 > He´s fun but he talks too much, Bjorn says to Agneta with a smile.

Wolf decides that it’s time to leave before any more jokes are made at his expense.

 > Upper management Thursday video meeting in conference room VIP 2, he
mutters while leaving the room.

 > Now tell me about your problem Agneta.

A two hour interview follows where Bjorn takes a lot of notes and Agneta promises
to give him access to all documentation that has been produced so far.
Bjorn reads all the documents, takes some more notes and decides to print all of
it out in order to support the Swedish paper industry. Then he schedules another
meeting with Agneta.

 > OK, he says. I have read through all of the documents in the project map and I
have some questions, rather a lot actually.

 > Which of all these documents are still valid as of right now he says, pointing at
all of the papers spread out on the big table in conference room the Seagull.
Cause I found a lot of stuff that seem to be contradictions to what you told in our
last meeting. Also the dates for the last updates for some of the documents are
several years old. How long has this project being going on for?

 > Well, it started and then stopped and then started again…a couple of times. But
we never seem to be able to finish. But let´s get back to the documentation.

After an hour of looking through the papers they end up with three documents that
seem to be the most recent and most likely to be at least partly true.

 > Let’s analyze what we have so far. Three documents and my notes from the first
meeting. Let me try to visualize the problem.

He grabs his pens and walks up to the flip chart. To small he figures and decides to
use the whiteboard. He turns to Agneta who’s sipping a fresh cup of tea with honey
and smiles encouragingly.

 > Let´s begin where it all starts. An author has written a paper and wants it
published in the journal.

He draws a simple stick man and a square with some text in. Then an arrow that
connects to the chief editor in the middle. Using simple and easy to understand
graphics helps the common understanding without intimidating anyone with special
technical language or symbols that only a few people get. After an hour of drawing
and discussing they have the first rough map of the problem. He takes a photo with
his phone camera

Picture: Problem map first sketch

This is a really god start. We have identified the main users involved and realize that
there are some pretty distinct areas. One is the management of submissions and
reviews, another creating the next issue and the third to handle subscriptions.

EXERCISE

Create a visual problem definition for the following:

In order to sell a medical product in Sweden it has to be authorized by the Swedish
medical board (LV). In some situations a physician or a veterinarian wants their
patient to have a medical product that is not authorized. The way around this is to
motivate why the patient should be allowed to buy an existing but not authorized
product and get a temporary license to buy. Today´s solution is that applications are
faxed but tomorrow’s solution is that all communication is done electronically. The
law says that only pharmacists can apply for a license. This means that the motivation
is first sent to a pharmacy, then the pharmacy creates the application based on the
motivation already written. The Swedish medical board then decides to grant or
deny permission for a temporary license or to ask for additional information before
they can decide. Either the physician or the pharmacy can be asked for additional
information but not both at the same time – at least that is our hypothesis. When a
temporary license has been granted – the pharmacy can order the product and sell
it to the patient. If a license has been denied – the physician can appeal by going to
court but this is said to be outside the scope of the project, at least for now.

At this point of time you are all thinking solutions but try to refrain for a while. Just
visualize the problem. Decide what parts to draw and what parts to omit. Don´t
worry too much, you can always redraw.

6
.

B
us

in
es

s
Im

pa
ct

 M
ap

pi
ng

To really get into the needs of what the goals really are, Bjorn creates a business
impact map, also known as effect map. This helps us focus on what we need before
we start solving the problem. This map usually contains a lot of detail so the manual
option here is good as a start but the best choice is usually a tool of your choice.
There are plenty of free mind-map tools, which is essential if someone else is going
to update the map in the future. The creation of the impact map follows he same four
basic steps as the creation of the problem map.

The business impact map was originally created in Sweden by Ingrid Domingues
(Ottersten) and Mijo Balic as a means to understand better what their clients really
wanted when creating web sites. It has started to spread in the agile community
largely thanks to Gojko Adzic. I have used the impact map in several projects in order
to support both requirements and testing. The key success factors are

 > Visibility: You get the whole map on one single page

 > True needs are identified: first needs – then solution

 > There is a connection between need – requirements and the solution

We have to be honest to ourselves. A lot of the time we – IT-people that develop
systems – are eager to solve problems but we hardly ever understand what the
problems really are. I am not going to rant too much about that fact right now though
but prefer to offer a step on the way to make the users of our systems happier.

Bjorn refines the map over the problem area consisting of all people and parts
involved and also puts together all of the needs of the different people in a business
impact map. He does all of the work on paper since this seem to stimulate the
creative process. A side effect is that people seem to be more interested in his little
hand drawn stick men than the clip art diagrams he used to put together. Suddenly
during discussions often someone grabs a pen and start correcting his drawings. He
meets with Agneta several times over the week and in the end they have a map that
they agree on. Bjorn has invited Agneta to another meeting to show her the latest
version of the business impact map!

 > Hi Agneta, I have tried to put together the complete picture of what you want the
system to handle. Let´s have a look and see what needs to be changed.

 > I think you have the target groups alright and the main goal is to make the
administration of the journal easier.

The full business impact map

 > Let´s zoom in on the administrator’s tasks. Here I have noted four different needs.
However the management of subscriptions you told me has low priority right
now so we´ll skip that for now. The first need concerns how to handle all of the
addresses of the registered contacts. The administrator needs to be able to add
new contacts but we have not yet specified how this is going to be done.

 > Yes, and I need to be able to search and analyze the current list of all contact in
order to remove or update invalid ones. But you missed my button!

 > Eh, what button are you talking about?

 > The button where I print out a list of all contacts to send to the distributors.

 > OK, I understand. That´s a button you have in the existing system. I suggest that
the real need you have is that all subscribers must get the next issue. How we get
those addresses to the distributor is part of the solution. There may be a better
way than you printing them out manually. I will make a note of that under Handle
Issues – Create address labels for each issue to make sure that it is taken care of.

The administrators needs

In the end we will have one single model covering all of the needs. If it grows large we
need to print it out big. A3 may be large enough for smaller projects.

Next step is to prioritize. This can be done on any level you want from focus group to
single requirement. After that is done we can use the map to create user stories or
some other format we prefer. It maps pretty nicely to the user story format.

Example: User Story: As an administrator I need to be able to add new contacts in
order to keep the contact list updated.

Now we may also realise that the effect maybe should be called Keep contact list
updated instead of Handle contacts. You chose, the important thing is that the
message is clear.

EXERCISE

Create an impact map for the license application system.

Patients are sick and in need of help. They want to be able to buy what the doctor
prescribes. Most applications start when a human visits their physician. The
requirements for the patients are a bit vague since they are not really users of a
future planned IT-system. Think of what a patient might want or need in order to get
well. There are some variations of licenses: a medical clinic can apply for a general
license that enables them to buy a product to several patient during two years at a
time. A veterinarian can apply for a license for either a single animal or a group of
animals like all cows at a farm.

A physician has to enter their personal id in order to get write the motivation – that
has to do with security. The code is checked against the entries in an existing system
called PRELIST. They have to enter a motivation and select a valid product that is
listed as being available on the market but not authorized. This system is called

MEDPROD. They need to be able to attach documents to least the most a their
motivation. They can but do not have to enter a specific pharmacy where to send the
motivation. They need to somehow be able to get current status of the application,
especially the end result and if they need to enter additional information. Entering
additional information means the motivation will not have to pass through the
pharmacy again.

The pharmacy needs to know what motivations are addressed to them directly.
This is their backlog. They also need to be able to search all existing motivations that
are in the systems in order to create applications on non-addressed motivations.
They need to know the status of ongoing application – especially if they need to
enter additional information and when the final decision is made so they can order
the product and sell it to the patient. Important fact is that in order to sell something,
a valid prescription is also needed. That is currently handled by another system
called PRESCRIPTS.

The Swedish medical board needs to know the status of all ongoing applications,
especially those that it’s their turn to handle. This means new applications and new
additions to ongoing applications. They need to be able to read all of the information
in the application and the motivation. They need to enter their decision in the
system so that the pharmacy, patient and physician can be notified. They also need
some help in knowing what they need to do and possibility to handle applications
internally. That means assigning to a specific person or group, prioritizing internally.
Also they need to be able to search earlier applications in order to re-use similar or
same reasoning when making their decisions.

There is a general requirement that the system protects sensitive information and
stops unauthorized use. Since the number of users that will apply only a few times
a year is large – 30 000 physicians and 5000 pharmacists. The system must be
intuitive and stopping users from at least the most obvious mistakes. Number of
applications each year is 100 000, number of required additions today is 30 000. The
performance must handle this amount of traffic.

7.
 V

is
ua

lis
in

g
T

h
e

So
lu

ti
on

The textual description of the suggested process is:

A person that wants to submit a manuscript

 > Uses the link on xxx.yyy.se to get to the registration page. Enter First Name,
Surname and e-mail

 > A confirmation mail with a link to confirm registration is sent to the e-mail
registered

 > When the confirmation link is clicked the user is registered correctly and an
e-mail with user id and password is sent out

The person can now login to the system

 > And enter the manuscript that they want to have published

The chief editor

 > Is now informed that a new manuscript has arrived and is ready to be reviewed

 > Enter a deadline for the review process (normally 8 weeks from start date)

 > Selects an associate editor from the contact registered in the contacts list

 > Selects five reviewers from the contact list. If necessary adds new contacts

 > A number of e-mails are automatically sent

 > The person submitting the manuscript gets a thank you note for submitting and
info on what will happen next

 > The associate editor gets a mail describing that he/she are selected and what they
will have to do and what reviewers are selected

 > The five reviewers get a mail describing that they are selected as reviewers, what
the work is about as well as user id and password for JOS.

The associate editor can now

 > Read the manuscript

 > Accept or decline the task. Their choice is registered in JOS.

 > If they decline the chief editor should be informed
…etc

In close cooperation with the developers Benny and AnniFrid, Bjorn creates the
solution map. We know more in detail what information needs to be sent to whom.
And since the project already has a version of a solution, some things are already
in place.

This serves as a basis for selecting test areas, what points to interact with the code,
what types of tests to use where and the boundaries for what we test. I also connect
this to test environment and test databases to get an overview.

Solution map.

Exercise

A) Simple: Suggest test boundaries and test types for the map of the journal system
above. Add them to the map.

B) Harder: Create a rough system map for the license management system based on
the following design decisions.

1. The physician will have four pages to select from. The first is a login age. Then
there are three choices: enter new, status existing and add information to
existing.

2. The pharmacy will have a main page with a to do list where they can also search, a
page to make new applications and one to add information to an existing one.

3. All webpages communicate via web services. All of the information entered
through the web pages is saved in a database.

4. The Swedish medical board has a system where they look at all information in the
applications and make their decisions based on that information.

5. We integrate with their system via a file area but are not responsible for usability
or function of their system

6. How can the testing effort be visually and textually entered into the system map
to get a good overview? This will then guide your test design.

8
.

M
an

ag
in

g
T

h
e

E
xa

m
pl

e
P

ro
je

ct > But how do we get this thing finished Bjorn, says Agneta during one of their
regular coffee breaks. It´s been going on forever and we just can’t seem to get
things done.

 > Well, I think one of the problems is that you try to do everything at once and
therefore manage to finish nothing. I suggest that we list all the things you want
done in a spreadsheet and then sort by priority.

 > So all the priory ones first then?

 > Hmmm, that might not be the best solution. I think we should first try to get a
couple of developers and then go through this together the four of us.

Bjorn ends up being named Scrum master since he suggested they use that method
to get working quickly. It turns out that the appointed project manager is mostly
administrative and does not really want to get his hands dirty actually trying to run
the project. He does however book the needed resources and then to let the other
project members manage themselves which turns out to be a pretty good idea.

 > Welcome to the restart of the journal project. Bjorn greets the web developer
AnniFrid and the back-end developer Benny. So let me brief you on what we have
got so far.

The four of them spend a full day at a nearby conference place going through the
problem definition, the impact map, solution map and possible ways of working
together. They also enjoy a good lunch and find out that they have children the same
age that are really into ponies.

 > Looking at the system map and the impact map, I think the best solution is to
build sprints by role says AnniFrid. If we start by building all of the functions that
are needed for the author to submit a paper we have something we can easily
demo. We have made some estimations for the user stories you listed and think at
least I can fit that into my schedule.

 > Yes, Benny agrees. That gives me a chance to make sure everything is connected.
There is some code already so I think we can manage that amount of work in two
weeks. Is that OK with you Agneta?

 > Sounds great if I actually can get something in just two weeks.

 > What about the testing Bjorn?

 > Well I can surely test from the web pages you create. I will then need access to
the database to check that data is updated as planned. I will probably have some
questions regarding that but until I can have the administrator page up and
running that will have to be the solution for checking the results. Besides your
suggestion to build by role fits nicely with my suggested test area listing.

 > Ok, then that’s our plan they say in unison.

The outcome from a day well spent is the following decisions:

1. Bjorn will put all needs into a spreadsheet and Agneta will review them

2. The developers will suggest in what order to build what is left in order to optimize
their effort

3. Starting next week we will have weekly meetings where we discuss what has
been done and decide what to do next. We will go through all items so we agree
on what they mean

4. Every other week we will have a demo of what’s new

5. After each demo.

6. Agneta will do a mini acceptance test supported by Bjorn in his role
as test manager

7. Each time we build a completely new part of the system we will also do some fast
and frugal acceptance testing in order to catch bigger mistakes quickly

8. Other than that. When we feel the need to communicate, let’s e-mail or better
yet, meet in person

9. Bjorn will create a Scrum board with columns to do, developing, test and done

8.1 TO DO SPREADSHEET – AKA PRODUCT BACKLOG

This list is updated daily and discussed at each weekly meeting. Sprint planning is
done on priority and available hours.

Sprint Description Estimate Priority Responsible Status

1
Submit manuscript including info needed.
Front-end

40 1 AnniFrid Ongoing

1
Submit manuscript including info needed.
Back-end

40 1 Benny Testing

1 Update DB w new fields 5 1 DBA Done

2 View new submission 8 1 AnniFrid

2 Sort and search submission 8 2

99 Stuff not so important 3

8.2 SCRUM BOARD

I have used a number of different boards. It is the nature of scrum to create your own
board design. This a fairly accurate description of how we do it:

1. A sign with the definition of done ready for everyone to see – it is easy to forget
the starting goals when time is starting to run out.

2. A sprint goal – basically what we will demo

3. The progress graph is updated every day at the daily scrum

4. Stories are usually the basic element – if they are too big we divide them in tasks
of recommended max estimate 8 hours.

5. Importance of what to do is from top to bottom – at least that is the idea

6. Every task has the photo of the person working on it for everyone to see

7. Work so far is added daily as well as the estimate of remaining work day

8. Unplanned work is put on a blue note and specific test tasks on green paper

9. Problems are tagged with a red sticker

Scrum board

8.3 REPORTING

Daily test reporting is done on the daily scrum. I also write a weekly report, a sprint
report and a final report. In order to get them done and to have people actually read
them I keep them short and informative.

WEEKLY

I use a weekly test report containing

 > What have we done since last report

 > What are we doing now and the coming days

 > What problems do we have

I also use a simple dashboard that I always keep updated. When asked for the current
status of testing I can get an updated report in a few minutes. Sometimes we put this
table up on the wall depending on the need for information sharing.

Test Dashboard

Text Preparations Func UX
Effort

planned
Quality Comments

Migration of data Done Ongoing Large

Submissions Done Done Normal

Editor tasks Started Low

Reviewing

SPRINT TEST REPORT

I use the same dashboard but change the reporting points to

 > The testing effort this sprint: result and time

 > Problems we need to take care of so the next sprint can work better for us

 > Any other comments that we see fit

FINAL TEST REPORT

So should test give a recommendation or not? Well I don’t think that the testers are
the gate keepers of quality or that is our decision to decide if we should go live or
not. But I do believe that after testing the application we should have an opinion and
not only report facts of what we have done. I we find serious bugs all the way into
the last day of testing we should inform what we feel about that and how ready the
system is to release. The decision is made on a different level anyhow.

I usually sum up important happenings and the total effort and budget. Other
than that I may have to supply information required by others because of a template
or process.

Use a dashboard over the testing effort per month or per sprint.

Test Status per sprint

Test area Priority 1 2 3 4 Comments

Migration of data High

Submissions Normal

Editor tasks Low

Reviewing

9.
 I

nt
ro

du
ct

io
n

 T
o

 T
es

t
D

es
ig

n So now when I have spent so much time on impact mapping, solution map and
managing the project do we get to dig into some core test design? Yes of course we
will. The aim of this paper is not to make a complete listing of techniques but to make
examples some of the more visual ones.

9.1 CHOOSING TECHNIQUES

There are plenty of useful techniques that focus on different aspects of testing.
Rather than trying to list as many as possible here I will instead discuss the thought
process and give you some examples. Many of the attempts to list the techniques
end up with mostly the mathematically and logical. Then it is popular to add what is
called experience-based testing and exploratory testing. Experienced based testing
is a rather sloppy way of lumping lots of techniques together and ET latter is an
approach and not a technique.

Certainly there are a lot of situations where the mathematical techniques are useful.
Working in banks for eight years there have been plenty of rules and formulas to
validate. Equivalence partitioning, combinatorial coverage and decision trees/tables
are some of the most useful ones.

State-based testing which is often very close to the actual implementation is a
technique I find powerful a lot of the time. It is also easy to make very visual.

Scenario testing is useful when focusing on the system as a whole either in business
processes, usability or the effects listed in the impact map.

Performance testing is always important since it will disturb the users experience if
using the system feels like one of those horrible dreams where you run as fast as you
can but do not seem to move at all. How much testing you have to do depends on
number of users, environment and how much data there is. Most performance tests
I have seen are rather performance measurements often with some trimming. For a
pharmaceutical application with a load of more than ten million requests per day it is
extremely important to performance test. For the example applications in this paper
with three simultaneous users and a five hundred request a day we will normally
chose to have a more limited approach.

Test design techniques and approaches

9.2 THE OVERARCHING PROCESS

When I wrote the book Essential Software Test Design I made a simple general
model of the steps. I think that it still works fairly well to explain the four steps
of test design.

 > The first step is to create the model. It is actually the four steps previously
mentioned in visual problem solving shown as one single step. Gather data,
analyze, visualize and present for others. Repeat until you agree.

 > Using the agreed upon model we now have to cover it. Covering means that any
boxes or arrows in a graph or a cell in a table is touched by why I call a base test
case. Some like to call it covering the test conditions.

 > If we cover a specific test condition there are usually many variations of test
data, many more that are possible to cover. We will have to do our best to find a
limited set that still has god coverage. This is where techniques like equivalence
partitioning and combinatorial testing comes in to support other techniques.

 > Then I realized that the nicely structured approach of the techniques needs to
be supported by thinking that would not fit into a formula or number of steps so I
added advanced testing as a last step. This really means that we have to think one
more time about what we have not covered yet using the selected technique.

The four steps of the generic test design process

10
.

St
at

e
Tr

an
si

ti
on

 T
es

ti
ng

State based testing is often closer to the real implementation than flows. I find it
much more powerful than flow graphs when describing complex systems. For me
testing very often includes checking what is in the database and here states come
naturally. The chapter State based testing in my book covers that in detail.
I think the easiest way to explain state graphs is to show you an example.

10.1 THE STATE GRAPH

For the journal system one of the key components is the submission. For a large
part of the application everything revolves around what states the submission are
in and what we have to do in order to go to the next state until we have reached an
end point.

Coding wise, the developers somehow need to know what to show the user on a
specific screen. This is usually done by a select statement from a database. Similarly
when I test something I think along the lines – if I press the button Submit paper,
then I should do a select statement where status is New Manus. And if I then go to
the administrator’s page the newly submitted manuscript should show up with the
right status. If the chief editor choses to refuse the submission by clicking that button
in the application I need to do another select to see that the status has changed and
on the administrator page it should no longer be possible to edit the submission.

In this particular project we had a lot of discussion on when to show submissions and
when to send out e-mails. I created a state graph and presented it for the team. We
then had an excellent discussion around what would help the developer’s code and
we ended up with the graph below. In fact, this graph ended up as one of the more
central documents both for coding and testing.

Web:Submit
manuscript

Web:Submit
manuscript

New
Manus

0

Web:Submit
manuscript

Add
R/AE

Author or
Admin
withdraws
manuscript

Dec=R
Add dec ltr

Dec=ER
Add dec ltr
Round +1

Refusal
5

At
referee

1

ER:At
Author

31

At admin
23

Add dec ltr

Author or
Admin
withdraws
manuscript

Dec=A
Add dec ltr

Dec=CA
Add dec ltr

Withdrawn
7

CA:At
Author

3

Editorial
Check

22

Accepted
4

Add dec ltr

Remove
from non-
published
issue

Published
6

Add to
issue

Admin sets
R + Saves

Send Mail

State graph of submission states

How to read the graph: When a manus is in the state New Manus and an assistant
referee is added, the status will change to At referee and an e-mail is sent to the
author saying that we started the review. We can then add reviewers or change
assistant editor without the state being changed. During the review process the
reviewers and associate editor add decision letters when they are done reviewing.
The state the changes to At admin where it stays until a new decision letter is added
and a decision made to Refuse, Accept or to ask for some smaller changes called
Conditional Acceptance or a lot of changes called Encouraged Refusal. Withdrawn
means that the author does not want to continue the process. The arrow back from
Accepted to Published means that the editor can change their mind on what papers
to include in the next issue.

The graph look fairly easy but it took many hours of discussion and redesign before
we finally agreed on this final version.

COVERING THE GRAPH WITH TESTS

The next step is to cover the graph with tests. This means that we make sure that
every state is covered. Then cover every transition and t last combinations of
transitions until we have complete flows from start to end. More combinations give
means more detailed testing.

The third part of the generic model is adding test data. In our example this can mean
adding more reviewers, some that accept and some that do not. Of those that accept
some actually review and some don’t. You get the picture, I think.

The fourth part which I mysteriously called advanced testing is everything you
can imagine outside the neatly structured process. Like endless loops reviewing,
changing editors and reviewers in mid-process or adding and deleting attachments.
Some would like to call this experience based testing or brain storming and would be
a fairly accurate yet somewhat vague description of what you actually do.

10.2 STATE DESCRIPTIONS

Depending on what type of system you are modeling, the states have different
attributes. You have to decide what attributes to include the model, every additional
attribute may double the number of possible states. Modeling a mechanical device
like an ATM-machine could have a state description when the machine is open and
ready for a customer described by the following attributes:

 > Show on screen: Welcome, please enter your card in the slot

 > Card slot: active, meaning that if someone puts a card in, the machine will feed it
in so it can read it

 > Numerical Keyboard: off, no input will be registered at this time

 > xtra buttons for fast selection: off, no input at this time

EXAMPLE JOURNAL SYSTEM

The journal system is a bit different. Here the attributes are places the submission
can be seen and edited and by whom. When a paper is submitted – does it show up
in the administrator’s inbox? When a review has started, does that show correctly in
the administrator’s screen, on the reviewer’s screen, for the author? What attributes
can different people read or edit during different stages of the review process?

Submitted Under review Accepted Published

Author page
Shows submitted
Cannot edit
submission info

Shows review
Cannot edit
submission info

Shows accepted.
Cannot edit
submitted info. Is
allowed to add new
files with changes

Shows Published.
Can only read
submission
overview and
no files.

Admin page Shows submitted
Shows under
review. Can edit
review info

Can select for
issue. Cannot
change info

Cannot change any
data. Can remove
from system

Ass. Editor
page

Nothing yet
Shows under
review. Can edit
review info

Shows as accepted.
Cannot change
anything

Shows as accepted.
Cannot change
anything

Reviewer
page

Nothing yet

Shows under
review. Can edit
review info until
own review is
submitted then
cannot edit

Shows as accepted.
Cannot change
anything

Shows as accepted.
Cannot change
anything

Database
Check tables X, Y, Z
for each state

Check tables X, Y, Z
for each state

Check tables X, Y, Z
for each state

Check tables X, Y, Z
for each state

10.3 STATE CHANGE TABLE

I can be very useful to create a table where each state transition is described in
detail. What are the events that trigger a change of state and what is the response
from the system.

Start status Event Action End Status

None
New manuscript added. Submitted
from web or added by admin

Notify editorial board if
submitted on web

0

0
Admin has selected editor and
referees and pressses Send Mail

Notify by mail author that
evaluation has started, notify
editor and referees that they have
been asked to participate. Round
set to 1 for new manus

1

0

Editorial board decides to do a
direct refusal. Manuscript not
worth evaluating. Decesion = R and
Save

Admin usually also sends a
short manual mail to the author
explaining why.

5

1
Editor adds decision letter using the
information that the referees have
submitted.

The editorial board is notified via 
e-mail that a decision has been
made

23

23
Admin adds final decision letter. 
Decision is A=Acceptance

The author is notified via e-mail 
that there is decision letter
available. The manuscript cannot
be changed from now on.

4

23
Admin adds final decision letter. 
Decision is CA=Conditional
Acceptance

The author is notified via e-mail 
that there is decision letter
available. The author needs to
make changes and submit a new
version. However only the editor
needs to review changes.

3

The rules for when to send e-mails turned out to be fairly complex and under
constant change. We added another table with detailed rules for sending out e-mail.

EXERCISE

Create a state graph, a state change table and a state attribute/test check list for the
license application system previously described. List some ideas of how you would do
to test using the models you created.

11
.

Sc
en

ar
io

 T
es

ti
ng

Start with the impact map to find out what different users want to achieve. Start with
the easy scenarios where everything works out fine without any problems. Gradually
increase complexity to cover special needs, error handling and combinations but
always try to finish the flow from start to end.

I always try to keep instructions short and to the point and rather use overviews i
n the form of bullet lists or tables. So many things will change during the project
that if you write detailed instructions they will be wrong by the time you start
testing and you will start hating everyone for making changes since you have to do
a lot of rework.

When executing these tests, the simple instructions and exploratory testing will help
you find a lot of possible problems. Use the test design models as an execution log
as well, that will save you some time and give you an excellent overview of what you
have done and where the problems are.

11.1 WORKFLOWS

Think of this as thin red threads starting at one of the natural starting point ending
up in one of the final states. Then start messing with the threads so they get messy
and not go as straight as they can.

EXAMPLE: JOURNAL SYSTEM

Start with the simple ones and gradually increase complexity

 > Submit a paper, assign an assistant editor and reviewers. Accept the submission.

 > Submit a paper, refuse it at once

 > Submit a paper, ask for rework, submit again, ask for additional information,
finally accept paper

 > Use the above three scenarios and make variations in what files you attach, how
many reviewers you use, what information you enter in different pages. Do an
overall check to see if things look OK for all different users

11.2 CYCLIC TESTING

Create an overview table for the application you are testing. Make sure you have a
fairly large amount of data in the system. Look in different parts of the system as well
as in the database.

Add several submissions for the same author and let them have different statuses.
Use an overview table like the one here. I often do the testing using a printed version
of the table and then log the results directly on paper. Add digitally later to keep a
record if you feel that is needed.

If you look at the different screens using different search criteria: what shows up?

Make some changes and search again. You may have to change dates manually in
order to get production like tests

11.3 EXERCISE SCENARIO TESTING

 > Use the state table for the journal system described previously and adapt it.

 > Create some scenario tests for the license application system using the variations
in this chapter. Use tables and lists. There is no point in making detailed
descriptions, by the time you get to test they will be wrong anyhow.

1
2

.
U

sa
bi

lit
y

Te
st

in
g Today, more than ever before, we really need to focus on the user experience, UX.

In the heart of all the testing we do must always be the question – will this solve the
user’s problem, will they understand and like this application? The knowledge for
this is generally rather poor in most of the projects I have worked in. This means that
user interaction designers or usability experts are a rare sight. So what can we do
about that?

When I started working in IT back in the mid-nineties the impression I got from the
more experienced testers was hat usability was reserved for the experts and not
included in my tasks as a test manager or tester. Today I have a different point of
view. Since I am convinced that testing 2.0 always have the user in focus that means
that impact mapping to understand what the user needs, coupled with usability is
a core task in testing. The good news is that we can with relatively simple tools and
actions do some really powerful testing.

I advocate an easy approach that is not perfect but is a lot of bang for the buck.
I have used this approach on several applications and am astonished how much
information we get from relatively basic testing. Another advantage is that when I
write the report on the testing – the problems mentioned come from observation
of real users doing real tasks in the system we are building. Getting this really good
feedback means that the goal to solve the identified problem is accepted by all
team members. Compare this to the endless discussion that may arise when you as
a tester try to convince developers that since YOU think it is hard to use it should
be changed! I have often heard the comment that everyone has their ideas around
usability so what makes you the one to listen to?

12.1 THE GENERAL PROCESS

I have tried to make this as easy as possible in order to actually getting it done.

PREPARATIONS

Write a couple of pages on how the usability testing will be done and what we will
get from them. Distribute this information in advance. Make sure that the message
is clear:

 “We are not testing how good you are but what problems you have with our design so
we can make it easier for you and your colleagues to use the application.”

Ask for the participation of three to five users per area. Five gives really good
feedback but it can be really hard to get this many users to participate and the
budget to execute it. Having only one or two users is a bit dangerous. You may get
someone that really hates all new things including computers, the new system they
are forced to learn and use and whatever you show sucks in their opinion. You think I
rant about this – it has happened for real more than once! Three is the magic number
- a good compromise – it’s doable and gives a lot of good feedback.

Create a list of specific things you want the user to perform. This should be inspired
mostly from the impact map and the high level requirements and focus on real

situation that are likely to happen. Creating the user guide is a tool for critical
analysis of the application as well as great inspiration for tests. Make sure time for
writing the guide is booked on documentation and not on testing since managers
often wonder why testing is so expensive. Also add the situations where you think
there may be a problem in situations that are less likely but still possible. Don´t try
to use to complicated strange tests that you invented but users consider so unlikely
that they don’t care about them. Start and end with tests that you are fairly sure that
the user will succeed with – this is important to make them feel good about their
work. Prepare the system with production like data and pick specific data for your
tests. Make sure you run the same tests yourself in advance so you know that they
are possible to execute and then reset the database. It is essential to be prepared
well and act professionally in order to build trust with the users. Since I am stressing
this you can understand that there have been occasions when preparations were
insufficient and the testing went down really bad. If you mess u – there may not be
another chance to try again.

If users are to receive training or user guidelines prior to real usage then make sure
they have the same preconditions for the usability testing.

THE TEST SESSION

Start by repeating the goal of the usability test and explain what will happen during
the coming hour. Explain that we need to stay focused and not be disturbed by
phones, e-mail or curios colleagues. You will give one task at a time to solve and they
think aloud while solving it. This helps you understand their though process.

Try to have only one person giving instructions and asking questions. It is a great
opportunity for developers, designers and requirements people to be observers of
how the users interact compared to what was designed for. Use only one observer at
a time to avoid making the user feel uncomfortable. Piling up the whole project in the
back of the room and trying to have them NOT discussing what they see during the
session is generally a bad idea. We never use any recording tools anymore since this
seems to be a disturbing factor for many and we got all the information we needed
during the session.

Ask the user to solve one small problem at a time and take notes on your
observations. If you have an additional observer you can compare notes afterwards
to get an even better report. If a user gets stuck, start by giving them clues but not
direct instructions. – Are there any other places you can look for information, how did
you do that on the last test, where do you normally look for help when you get stuck?
Don´t tell them exactly what do until they have tried on their own for a while. Finish
the session by asking them the open-ended question what their general thought are
and if they want to stress some things they found extra hard or easy to do.

A session should take a maximum of one and a half hours including a short intro and
summing up in the end. It is very intense for the users as well as the observers. After
the session is over, try to analyze and sum up as soon as you can since you do have
information in your head that was not written down. As soon as you start the next
session you will start mixing things up if you don’t flush it out in written form.

ANALYZE & REPORT

When you have finished all the sessions for an area you need to sum up all your
observations. Severity of problems found is your subjective impression paired
with the actual problems written down. This depends on how many users had the
problem and how hard it was to solve the given task. If you already see possible
solutions, write them down as well.

DECIDING WHAT TO FIX

Now is the moment of truth. Gather the project and present your report. Describe
what type of problems there were and how severe you think they are. Suggest
possible solutions. The project team will now decide what to fix and in what order.
Some things may be really easy to handle and will therefore be given high priority,
others may be really hard to solve and will be handled only if we find the problems
really important to solve. Remember your task as a tester is not to always get your
personal opinion executed but to inform others so you can decide together what
to do. I have found that having this more humble approach usually gets more
problems fixed.

After fixes are done you need to redo at least some of the usability tests. Probably a
lot less testing than the first time if the interface hasn’t changed completely.

12.2 EXAMPLE JOURNAL SYSTEM

For the journal system we built we had the following approach. The chief editor
was part of the project and tested during the whole time so she decided we did not
need any additional usability tests on the chief editor tasks. We created tests for the
author, the associate editor and the reviewer.

Now this is a limited world since all of the people involved are researchers. This
means one person can be author of one paper, associate editor of another and
reviewer of a third. So we ended up doing several sessions for different roles with a
few selected people. We did not only find usability problems but also requirements
that needed to be added or changed.

This is the interface we started with

OUR FINDINGS IN SHORT

1. The application interface is rather messy and it is hard to find a good workflow

2. Users want to be able to register on their own directly on the web and select their
own passwords

3. The error handing is inconsequent and hard to understand

4. At this point we decided to bring in an interface designer to help out. We
managed to get 40 hour in the budget for this.

DECIDED ACTIONS

Together with the interface designer we came up with the following list.

1. Increased focus on each page on the next step in order to get an easy to
understand workflow.

a. Highlight buttons with size and color

b. Hide information that does not need to be seen by everyone

2. Create a workflow that supports the users way of working

a. Restructure we pages

b. Better error handling

3. Cleaner design

a. Better overview

b. Easier forms

c. Calmer and more modern graphics

d. Larger fonts and narrower columns for text

And here is the new design

EXERCISE

Suggest usability tests for the license application. One page per role you want to do
usability tests for. Write down your suggested approach for the usability tests.
Keep it short.

Discuss pros and cons with different approaches.

13
.

Su
m

m
in

g
th

is
 u

p 13.1 SUMMING THIS UP

Dear reader, I am so happy you made it this far. I hope that this has inspired you to
try out more visual techniques to become better problem solvers. I had fun writing it
but I did take many hours more than I originally planned. Maybe it will evolve into a
book in the future!

I think that visualizing problems will help you solving them as well as reaching
consensus regardless if your role is tester, business analyst or developer. As a bonus
it has made my work more fun.

I would love to get your feedback on what you read on torbjorn@ryber.se

Now, just do it!

www.eurostarconferences.com

Join us online at the links below.

http://feeds.feedburner.com/eurostarconferences/vrmT
https://twitter.com/esconfs
https://www.facebook.com/EuroSTARSoftwareTestingConference
https://plus.google.com/+Eurostarconferences/posts
http://www.youtube.com/user/EuroSTARConference
http://www.linkedin.com/company/2559829?goback=.npe_*1_*1_*1_*1_*1_*1_*1_*1_*1_*1_*1&trk=prof-exp-company-name

	1. Introduction
	1.1 THE PROBLEM
	1.2 THE SOLUTION
	1.3 THIS PAPER

	2. Visual Problem Solving In Four Steps
	3. But I Can’t Draw!
	3.1 GUIDELINES
	3.2 TEXT
	3.3 SEPARATORS AND CONNECTORS
	3.4 PEOPLE
	3.5 BUBBLES
	3.6 ICONS
	3.7 THINGS
	3.8 SOURCES

	4. The New Process & Where Testing Fits
	4.1 IN THE BEGINNING THERE WAS DARKNESS
	4.2 NOW WHAT? - THE SPRINT PROCESS

	5. Defining The Problem
	5.1 HOW IT ALL STARTED

	6. Business Impact Mapping
	7. Visualising The Solution
	8. Managing The Example Project
	8.1 TO DO SPREADSHEET – AKA PRODUCT BACKLOG
	8.2 SCRUM BOARD
	8.3 REPORTING

	9. Introduction To Test Design
	9.1 CHOOSING TECHNIQUES
	9.2 THE OVERARCHING PROCESS

	10. State Transition Testing
	10.1 THE STATE GRAPH
	10.2 STATE DESCRIPTIONS
	10.3  STATE CHANGE TABLE

	11. Scenario Testing
	11.1 WORKFLOWS
	11.2 CYCLIC TESTING
	11.3 EXERCISE SCENARIO TESTING

	12. Usability Testing
	12.1 THE GENERAL PROCESS
	12.2 EXAMPLE JOURNAL SYSTEM

	13. Summing this up
	13.1 SUMMING THIS UP

